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On the effects of a compressible viscous lubricant on the
load-bearing capacity of a journal bearing
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SUMMARY

A compressible viscous isothermal model is presented for studying journal-bearing lubrication. The
viscosity in the model thickens with increasing density. The governing equations are written in terms of
velocity, the natural logarithm of the density and the kinematic extra-stress tensor. A semi-Làgrangian
treatment of the material derivatives is combined with a spectral element discretization in space. The roles
of the speed of sound and the eccentricity ratio on the load-bearing capacity of the journal bearing are
investigated. Compressibility is shown to enhance the load-bearing capacity and this effect is amplified
as the eccentricity ratio approaches unity. It is shown that for speeds of sound in the region of those of
multigrade oils, the dominant component of the force on the journal acts along the line joining the centres
of the bearing and journal and in the direction away from the narrow gap. Copyright q 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Lubrication in journal bearings is of considerable interest and importance within the automotive
industry. The ability to predict the performance of a lubricant within this engineering setting is
important to the manufacture and processing of oils that have the capacity to reduce friction and
wear, and hence ensure that engine components run smoothly and have an adequate longevity.

In this paper, we consider hydrodynamic lubrication. In this lubrication regime, the elastic
deformation of the journal and bearing surfaces are assumed to be insignificant. Our understanding

∗Correspondence to: T. N. Phillips, School of Mathematics, Cardiff University, Senghennydd Road, Cardiff
CF24 4AG, U.K.

†E-mail: phillipstn@cf.ac.uk

Contract/grant sponsor: E.P.S.R.C

Copyright q 2007 John Wiley & Sons, Ltd.



1092 P. C. BOLLADA AND T. N. PHILLIPS

y

x

e

RB

RJ

J

B

Figure 1. Schematic picture of a journal bearing with the difference in radius exaggerated for clarity.

of hydrodynamic lubrication dates back to the pioneering experiments of Tower [1], in which
the existence of a film was detected from measurements of pressure within a lubricant. The
same conclusion was reached by Petrov [2–5] using friction measurements. This work was rapidly
followed by some theoretical work of Reynolds [6], who introduced what is known as the lubrication
approximation. This approximation enables a second-order differential equation for the pressure
in the narrow, converging gap between the journal and the bearing to be derived.

This facilitates the calculation of the load on the journal. In some situations, an analytical
expression for the load and torque on the journal can be derived. This shows that the pressure
enables a load to be transferred between the surfaces with extremely low friction, since the surfaces
are separated by a fluid film. A positive pressure is generated by the convergence of the journal
and bearing surfaces, the relative motion between the surfaces and the viscosity of the lubricant.
The existence of the positive pressure serves to support a normal applied load.

In an order of magnitude analysis of Navier–Stokes equations, Hamrock [7] shows that the
inertial term is of order h/ l where h and l are characteristic lengths associated with the radial
and azimuthal directions, respectively, and can be taken to be the average gap between the journal
and bearing, and the radius of the journal. On the other hand, the pressure gradient and viscous
terms are of order 1. By neglecting terms of order h/ l (the inertial term) in the Navier–Stokes
equations (Stokes flow) we note that, for any given solution (u, p) then (−u, −p) is also a solution.
Using this together with the symmetry of the geometry (see Figure 1) infers that the pressure p is
antisymmetric about the small gap. Thus, we expect that the force imparted along the line joining
the journal and bearing centres will be much less significant than the force normal to this line. In
this paper, we show that the presence of compressibility changes this picture for high eccentricity
ratios.

In the previous work on the journal-bearing problem [8–11], it was assumed that the lubricant
was incompressible. The motivation behind this study is to broaden the modelling assumption to
include compressibility. Compressibility may play an important role in journal-bearing lubrication
for a number of reasons.

First, the observation has been made that cavitation has a beneficial effect on the dynamics of a
physically engineered journal bearing in that it can stabilize the motion of the journal. There are
two main types of cavitation: gaseous and vapour. Gaseous cavitation occurs when the pressure
of the lubricant falls below the ambient pressure level and this subambient region is replaced by
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air. Vapour cavitation occurs when the lubricant reaches such low pressures that it ‘boils’ and
air that was previously in solution appears as vapour. The pressure levels required for vapour
cavitation are generally much lower than for gaseous cavitation. This paper is concerned with
a 2D configuration and in this geometry there is no mechanism for the occurrence of gaseous
cavitation since there are no holes or openings for air to enter since it is a confined flow. For
vapour cavitation, the assumption that fluid particles remain fluid particles is not valid since the
gas appears out of solution from the oil. Therefore, cavitation can only realistically be modelled
by invoking compressibility.

Secondly, the study of flow phenomena associated with compressible fluids is important in
order to understand fully many other industrial processes apart from journal-bearing lubrication.
In the realm of non-Newtonian and viscoelastic fluids, for example, we cite injection moulding
and high-speed extrusion as situations in which pressure and flow rate may become large. In these
situations, compressibility effects may become very important. As noted by Belblidia et al. [12],
there are a number of advantages in working with compressible flow, e.g. the compatibility of
discrete function spaces.

Thirdly, a more natural model for viscosity in journal bearings should incorporate an elem-
ent of density thickening rather than the pressure thickening model presented in Gwynllyw
and Phillips [13]. The model presented here sets viscosity to be proportional to density which
in turn is linearly related to pressure. Thus, kinematic viscosity is assumed to be constant and
allows significant simplification in the momentum equations. However, such a simplification needs
to treated with caution. For comparison, isothermal examples of pressure-dependent viscosity, are
the Barus equation [14]

� = �0 exp(�(p − p0))

which is thought to be effective at low pressure and the Roelands equation [15]
� = �0 exp{(ln �0 + a)[(1 + b(p − p0))

z − 1]}

where the index z = �/[b(ln �0 + a)], and typical values for the constants (in S.I. units) are,
� = 2.1× 10−8, a = 9.67, b= 5.1× 10−9. Taking the Barus relation as an example, we find using
a linear equation of state for pressure p= c2� that � = 2.1× 10−8 m2/N, �0 = 400 kg/m3 and
c= 1500m/s gives a change in viscosity of 20% for a 1% change in density. Since we find
changes of pressure of up to 10% in our simulation this clearly gives different values of stress
when compared with the Barus model and some results (e.g. the torque on the journal) can only be
viewed qualitatively. Having said this, however, it is computationally expedient to use the constant
kinematic viscosity to keep the equations linear keeping in mind that the main thrust of this paper
is an exploration of the role of compressibility on the load-bearing capacity. Refinements to the
model including the viscosity relations given above, temperature thinning, elasticity and realistic
equations of state will be explored in a subsequent paper. Initial results suggest, for example, that
a Barus law exaggerates the load-bearing capacity and temperature and shear thinning reduces the
effect.

The compressibility of a fluid is intimately connected with the speed of sound, c. In this initial
model, this can be kept constant but at a later stage it may be given as a function of density (or
pressure) to reflect the differences in the speed of sound of c in the liquid and gas phases. In this
first exposition of a compressible model in the journal-bearing problem, we explore the loads on
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the journal for a series of values of sound speed c, journal radius and eccentricity. A particular
feature of the model is its similarity to Navier–Stokes equations with constant dynamic viscosity
replaced by that of constant kinematic viscosity plus an extra term associated with compressibility
essential for a general isotropic fluid [16]. By taking increasingly large values of c the model
presented gives an alternative way of simulating incompressible Newtonian fluids avoiding the
well-known problems associated with incompressibility constraint ∇ · u= 0.

A semi-Lagrangian scheme for treating the material derivative is employed within the numerical
scheme. The method takes full advantage of the continuous approximations generated by the
spectral element method, which can be easily evaluated away from the grid points. The relative
simplicity of the model ensures that computation times are rapid and allows a high-order spectral
approximation to be used. Converged approximations are obtained either by increasing the order
of polynomial approximation or by increasing the number of spectral elements—even when the
journal is highly eccentric and its radius differs significantly from that of the bearing.

The structure of the paper is as follows. In Section 2, the governing equations are presented for
the compressible isothermal viscous fluid and the speed of sound is discussed in the context of
the fluid model. In Section 3, the discretization of the material derivative is discussed and the new
geometric method presented. In Section 4, the weak formulation and spatial discretization process
is presented. In Section 5, some numerical results are presented showing the influence of the speed
of sound and the eccentricity ratio on the load-bearing capacity of the journal bearing. A study of
numerical convergence is also provided. Concluding remarks and a discussion of further research
activities in this area are given in Section 6.

2. GOVERNING EQUATIONS FOR A COMPRESSIBLE VISCOUS FLUID

The lubricant is modelled as a compressible viscous fluid. Using constant kinematic viscosity rather
than constant dynamic viscosity, it is possible to ensure that most of the non-inertial terms in the
governing equations remain linear. The nonlinear stress term is negligible for near incompressible
flow so by choosing a large value for c, for example, one can obtain predictions that are close to
those for a Newtonian fluid.

2.1. Conservation equations

The conservation of momentum, or equation of motion, for a fluid is

�
Du
Dt

= −∇ p + ∇ · S (1)

where � is the density, u is the velocity, p is the pressure, and S is the extra-stress tensor. The
extra-stress tensor for a compressible viscous fluid is given by

S= �1(∇u + ∇uT) + �2(∇ · u)I (2)

where �1 is the dynamic coefficient of viscosity (shear) and �2 is the second coefficient of viscosity
(dilatational). The quantity 2

3�1 + �2 is known as the bulk viscosity [16]. The bulk viscosity is
relevant only in situations where the density is changing. Thus, it plays a role in attenuating sound
waves in fluids and may be estimated from the magnitude of the attenuation.
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The conservation of mass, or equation of continuity, is written as

D�

Dt
=−�∇ · u (3)

The second viscosity coefficient is typically set to �2 = − 2
3�1, which means that the bulk viscosity

is zero and ensures that tr(S) = 0. This is known as Stokes’ hypothesis. However, the validity of
this hypothesis is one of the unanswered questions in fluid mechanics. Gad el Hak [16] argues that
the hypothesis does not hold, in general, and suggests that the value of the second coefficient of
viscosity should be positive with measurable effects in shock wave situations. On the other hand,
Phan-Thien [17] states that the �2(∇ · u) I term can be absorbed into the pressure term. It appears
to be the case that a physical measurement of pressure corresponds to a measurement of − 1

3 tr(r)
(where r= −pI + S is the total stress), which for zero bulk viscosity corresponds to the variable
p. Since this paper is largely concerned with the force on a fixed rotating journal, the relevance
of these questions, as they pertain to journal bearings, can be largely addressed by finding the
resultant forces for a range of values of bulk viscosities.

2.2. Equation of state and kinematic stress

For isothermal flow, we assume the existence of an equation of state

p= p(�)

so that

∇ p= dp

d�
∇�

We assume viscosity is linearly dependent on density

�1 = ��, �2 = ��

for some constant kinematic viscosity � and �( = − 2
3�). Thus, we can rewrite (1) and (3) as

Du
Dt

=−dp

d�
∇q + ∇ · T + ∇q · T (4)

and

Dq

Dt
=−∇ · u (5)

where the kinematic extra stress is defined

T≡ �(∇u + ∇uT) + �(∇ · u)I (6)

and we define the log density

q ≡ ln � (7)
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Choosing an equation of state, p= c2�, for constant speed of sound c (see Section 2.3) gives

Du
Dt

=−c2∇q + ∇ · T + ∇q · T (8)

We have chosen this equation of state since the variation of density with pressure is approximately
linear at low pressures. At high pressures, the rate of increase is found to be sublinear.

An alternative equation of state that has been used in polymer processing is the so-called Tait
equation:

p + B = B

(
�

�0

)m

(9)

where �0 is the density of the fluid extrapolated to zero pressure. In the Tait equation, B is a
weak function of entropy and m is a non-dimensional power-law index, not to be confused with
the ratio of specific heats. However, in practice B is taken to be constant and is used to represent
a non-dimensional shift for the pressure. Although this equation is normally attributed to Tait, it
bears little resemblance to the equation originally proposed by Tait and used by him to fit data for
sea water. In fact, Equation (9) is a modification of Tait’s original equation suggested by Kirkwood
and Bethe [18, 19]. The speed of sound in the modified Tait equation of state is given by

c2 =
(
mB

�0

)(
�

�0

)m−1

= mB

�m0
e(m−1)q (10)

Another density–pressure relation widely used in elastohydrodynamic lubrication is [15, 20]
� = �0[1 + ap/(1 + bp)]

We can rewrite this as

p= c20
� − �0

1 + C(1 − �/�0)

where c20 = 1/(�0a) and C = bc20�0. For typical values of C ≈ 1.5 and a comparison with the Tait
equation suggests that with m ≈ 4 the models agree well for � = �0±10%.

2.3. A note on the speed of sound

Consider the measurement of the speed of sound in a stationary bath of fluid. Given the equations
of continuity and momentum and, following the approach outlined in the book of Billingham and
King [21], we perturb the system: p= p0+ p̃, � = �0+ �̃ and u= ũ. The equations in the perturbed
quantities are then

1

�0

��̃

�t
= −∇ · ũ (11)

and

�ũ
�t

= − 1

�0
∇ p̃ + 1

�0
[�1∇2ũ + (�1 + �2)∇(∇ · ũ)] (12)
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Taking the divergence of (12) (assuming ∇�1 and ∇�2 are both negligible) gives

�∇ · ũ
�t

=− 1

�0

�2�̃
�t2

=− 1

�0
∇2 p̃ + 1

�0
(2�1 + �2)∇2(∇ · ũ)

implying that �̃ satisfies the wave equation

�2�̃
�t2

=∇2[ p̃ − (2�1 + �2)(∇ · ũ)] (13)

Now, p= c2(� + �0) implies p̃= c2�̃ and so with �2 =− 2
3�1

1

c2
�2 p̃
�t2

=∇2 p̃ − 4

3
�1∇2(∇ · ũ) (14)

Finally, using (11) to eliminate ∇ · ũ gives

p̈=∇2
[
c2 p̃ + 4�

3
ṗ

]

where ṗ≡ � p̃/�t and � ≡ �/�0. This equation has an attenuated wave solution with wave speed,
a, given by

a ≡
√
c2 −

(
�k

2

)2

(15)

and attenuation exp(− 1
2�k

2) where k is the wave number and � ≡ 4
3�. For general �, � the result

is � = 2� + �. For a value of � = 1.25× 10−5 m2/s used in [13] and sound speed c>340m/s
then clearly c≈ a with little attenuation for frequencies below ultra sonic. However, for higher
frequencies it may be possible to measure � and so verify � = − 2

3� with � measured indirectly by
such a method [16].

3. THE STATICALLY LOADED JOURNAL-BEARING PROBLEM

Consider the 2D geometry shown schematically in Figure 1. The journal of radius RJ rotates
with a predetermined constant angular velocity � about its own centre. The journal’s motion is
lubricated by a fluid lubricant contained within a stationary bearing of radius RB. Both the journal
and the bearing are assumed to be of infinite extent in the axial z-direction. The time-dependent
eccentricity of the system is denoted by e, with the eccentricity ratio defined by �= e/(RB − RJ),
0���1. Therefore, when �= 1 the journal is in contact with the bearing and when �= 0 the journal
and bearing are concentric.

The lubricant satisfies the governing equations (5), (6) and (8) which are solved subject to
specified boundary and initial conditions. These are, respectively,

u(x, t) =V(t) with x∈ �J, u(x, t) = 0 with x∈ �B (16)

u(x, t = 0) = 0 (17)

where �J and �B denote the boundaries of the journal and bearing, respectively.
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Figure 2. A coordinate system for the journal bearing. This coordinate system has the feature that constant
r describes a circle and radial lines meet at the point (e, 0).

We consider the following coordinate system in the journal-bearing configuration (see Figure 2):

x = r cos � + �(1 − r) (18)

y = r sin � (19)

for r ∈ [R, 1] and � ∈ [0, 2	], where the radial distance has been scaled by RB. The eccentricity
ratio, in terms of the scaled radius, is now defined by

�= e

1 − R

The derivatives associated with the transformation are related through⎡
⎢⎢⎣

�
�r
�
��

⎤
⎥⎥⎦ =

[
cos � − � sin �

−r sin � r cos �

]⎡⎢⎢⎣
�
�x
�
�y

⎤
⎥⎥⎦

so that ⎡
⎢⎢⎣

�
�x
�
�y

⎤
⎥⎥⎦ =

[
r cos �/J1 −(sin �)/J1

r sin �/J1 (cos � − �)/J1

]⎡⎢⎢⎣
�
�r
�
��

⎤
⎥⎥⎦
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Figure 3. Pictorial representation of the stretching function �̃.

where J1 ≡ r(1 − � cos �). The above mapping can be refined by including a stretching function,
�̃ : [0, 2	]→[0, 2	], to aid with mesh refinement in the region of the narrow gap, corresponding to
� = 0, where the large pressure gradients occur. Essentially, this can be achieved by using some
form of the inverse tangent function, viz.

�̃(�) = 	(1 + tan−1[a(� − 	)])
tan−1(a	)

This mapping is illustrated in Figure 3. It has an explicit inverse representation �̃−1 : [0, 2	]→
[0, 2	] (required by the semi-Lagrangian discretization) given by

�̃−1(�) = 	 + 1

a
tan−1(tan−1(a	)(� − 	)/	)

4. LAGRANGIAN DESCRIPTION OF THE MATERIAL DERIVATIVE

The discretization of the governing equations for an incompressible fluid in an Eulerian framework
results in a system of equations that is nonlinear and non-symmetric. To overcome this problem,
the convection terms in the equations are generally treated explicitly. This avoids the need to
perform a linearization of the equations using Newton’s method, for example, and to solve the
resulting linear systems of equations using iterative techniques such as GMRES and its variants.
However, the use of an explicit discretization of the convection term results in a restriction on the
size of time step that can be used for stability reasons. The principal computational expense is
then associated with the inverse of a generalized Stokes operator.
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An alternative to the use of explicit Adams–Bashforth methods for the convection term is to
use a backward differentiation (BDF) method combined with an extrapolation of the nonlinear
convection terms. Karniadakis et al. [22] proposed a third-order BDF combined with a third-order
extrapolation scheme to evaluate the convection term at the new time level. The resulting scheme
is globally third-order accurate and is devoid of any time-splitting error.

Another class of methods that is used in the numerical simulation of the Navier–Stokes equations
is based on the use of fractional steps in which the treatment of the nonlinear terms, incompress-
ibility and the viscous terms are decoupled. The second step, which forces the velocity field to
be incompressible, results in the construction of a Poisson problem for the pressure for which
consistent boundary conditions need to be imposed. A detailed account of transient schemes used
in conjunction with spectral methods can be found in the monograph of Deville et al. [23].

In this section, the discretization of the material derivatives in the conservation equations is
described. A Lagrangian rather than an Eulerian description of the material derivative is preferred.
However, in order to avoid computational problems associated with excessive particle movement
such as the distortion of the spectral element mesh, a semi-Lagrangian approach is adopted. In
our implementation of this approach, the spectral element mesh remains fixed and the material
derivative is discretized in a Lagrangian sense over a single time step. There are two material
derivatives in the governing equations for a compressible viscous fluid and these account for all
but one of the nonlinear terms in these equations. The natural framework within which to discretize
the material derivative terms is the Lagrangian framework and it is this which we describe here.

Consider the momentum equation written in the form

Du
Dt

= f(u) (20)

where f is an implicit vector function of u defined by

f(u) =−c2∇q + ∇ · T + ∇q · T (21)

The implicitness arises from definition (6) of T as a function of u and the observation that q is
a function of u via continuity equation (5). Therefore, f is an implicit function of u and position
only. We may also write momentum equation (20) in the form

�u
�t

+ u · ∇u= f(u)

The temporal discretization of this equation using an implicit backward-Euler scheme at given
points x results in the following nonlinear equation for un+1:

un+1(x) − un(x)
�t

+ un+1(x) · ∇un+1(x) = f(un+1) (22)

where all terms are evaluated at the same spatial point, x. This is the essence of an Eulerian
description of the problem. Consider a particle located at position x= xn+1 at time t = tn+1. Then
substituting x= xn+1 in (22) we have

un+1(xn+1) − un(xn+1)

�t
+ un+1(xn+1) · ∇un+1(xn+1) = f(un+1(xn+1)) (23)
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We note that the particles at the point x= xn+1 at times t = tn and t = tn+1 are different, in general.
This is the cause of the nonlinearity. Suppose that the particle located at the position xn+1 at time
t = tn+1 was at the position xn at t = tn , then we may write the time discretization of the material
derivative in Lagrangian form

un+1(xn+1) − un(xn)
�t

= f(un+1(xn+1)) (24)

The Lagrangian derivative is a derivative along particle trajectories. The nonlinearity on the left-
hand side of (23) is now removed from the discretization. However, now the problem is how to
determine xn and to evaluate un(xn) using some form of interpolation since, in general, xn will
not be located at a grid point. One option is to use the Taylor series for position

xn = xn+1 − �tun+1(xn+1) + 1

2
�t2

D

Dt
un+1(xn+1) + O(�t3)

= xn+1 − �tun+1(xn+1) + 1

2
�t2f(un+1(xn+1)) + O(�t3) (25)

i.e. we calculate the previous position of the particle from a knowledge of its current position,
velocity and acceleration. Now using Taylor expansion for vector fields v about a point x in space:

v(x + 
x) = v(x) + ∇
xv(x) + 1
2∇
x∇
xv(x) + O(|
x|3)

where 
x is assumed to be a small displacement and ∇
xv≡ 
x · ∇v. To first order this gives the
scheme

un+1 − un

�t
+ un+1 · ∇un = f n+1(un+1) (26)

There are two disadvantages with (26). Unlike (22), the scheme is not symmetric and also retains
the disadvantage of altering the inertial contribution to the system at every time step lowering
computational efficiency. For example, a scheme such as

un+1 − un

�t
+ un · ∇un = f n+1(un+1)

has the advantage of being both more efficient and symmetric; though having the disadvantage of
being less stable in transient flow and generally requiring smaller time steps.

We now present an alternative to the forgoing using an iterative scheme. First, instead of (25),
we use an alternative mid-point second-order approximation for xn

x − xn

�t
= 1

2 (u
n+1(x) + un(xn))
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where we have introduced the notation x≡ xn+1. We can rewrite this equation in the form

xn = x − 1
2�t[un+1(x) + un(xn)] (27)

Finally, substituting this expression for xn into (24) gives

un+1(x) − un(x − 1
2�t[un+1(x) + un(xn)])
�t

= f(un+1(x)) (28)

This is a nonlinear equation for un+1(x), which can be solved using an iterative scheme at each
grid point x. Note that we do not need to solve for q in this iterative scheme since it is given
explicitly in terms of u.

Let S ={x j : j = 1, . . . , L} denote a set of mesh points. Then, the semi-Lagrangian procedure
to determine the solution, un+1, of (20) at each point x∈ S at the new time level is:

1. Let un+1
0 denote the initial approximation to u at time t = tn+1. For example, a reasonable

approximation is un+1
0 (x)= un(x).

2. Determine an approximation, xn0, to the position of the particle at time t = tn which is located
at the point x at time t = tn+1 by discretizing

dx
dt

=u

along the particle path using, for example, the backward-Euler approximation

xn0 := x − �tun+1
0 (x)

3. Evaluate un(xn0).
4. Set m := 1.
5. Solve the following nonlinear equation for un+1

m (x) to obtain an updated approximation for
un+1(x):

un+1
m (x) − un(xnm−1)

�t
= f(un+1

m (x))

6. Determine an improved approximation, xnm , for the location of the particle at the previous
time level using the mid-point approximation:

xnm := x − �t

2
(un+1

m (x) + un(xnm−1))

7. Evaluate un(xnm).
8. If

max
x∈S |un(xnm) − un(xnm−1)|>


where 
 is some prescribed tolerance, then set m :=m + 1 and go to step 5.
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10. If

max
x∈S |un(xnm) − un(xnm−1)|�


then convergence has been achieved at the current time level and we set un+1(x) :=un+1
m (x)

and proceed to the next time level.

This iterative process converges to zero rapidly—requiring typically two or three iterations for five
decimal place accuracy. The scheme lends itself to spectral element discretization where values
of u(x) are easily evaluated away from the nodes. In respect of the last point, the scheme is not
compatible with finite difference methods.

Despite the apparent cumbersome nature of the above semi-Lagrangian algorithm, it does have
certain advantages over some iterative procedures for treating the convection term, e.g. such as
the semi-implicit discretization un · ∇un+1. The principal advantage is one of stability since the
semi-Lagrangian discretization of the material derivative is performed in the natural direction along
particle paths. Another important computational advantage is that, after spatial discretization, the
coefficient matrix M of the resulting system of algebraic equations, Mx=b, is symmetric and
does not change in time since the nonlinear term ∇q · T is treated explicitly. Only the right-hand
side of this system needs to be updated at every time step. Furthermore, no derivatives of un are
required within the semi-Lagrangian step.

We now extend and apply the semi-Lagrangian approach to the treatment of the coupled set
of conservation equations. A weak formulation of the governing equations is derived. Defining
un ≡un(xn) and qn ≡ qn(xn), we have the semi-discrete scheme

u − un

�t
=∇ · (−c2qI + T) + ∇q · T

q − qn

�t
= −∇ · u

Let � denote the region between the journal and bearing. At each time step, a solution is sought
in the following spaces:

W={w :wa ∈ H1(�), a ∈ [1, 2],w=V on �J,w= 0 on �B}

P = H1(�)

R=[H1(�)]4s

where the extra-stress space R is the space of symmetric 2× 2 tensors whose components belong
to H1(�), and �J and �B are the boundaries of the journal and bearing, respectively. We also
define the test space, W0, for the velocity:

W0 ={w :wa ∈ H1(�), a ∈ [1, 2],w= 0 on �J and �B}
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The weak formulation is then: find u∈W, q ∈ P and T∈R, such that

∫
�

u − un

�t
· w +

∫
�
T : ∇w= c2

∫
�
q ∇ · w +

∫
∇q · T · w, ∀w∈W0 (29)

∫
�

(
q − qn

�t
+ ∇ · u

)
p= 0, ∀p ∈ P (30)

∫
�
T :W − �

∫
�

∇u : (W + WT) = �
∫

�
∇ · u tr(W), ∀W∈R (31)

5. SPECTRAL ELEMENT DISCRETIZATION

In this paper, the spectral element method is used for the spatial discretization. The spectral element
method is based on the weak formulation of the governing equations and possesses advantages of
both spectral and finite element methods. The computational domain is partitioned into a number of
spectral elements such that the intersections between elements form either a common edge or vertex.
The computational efficiency of the method is partly due to the mapping of each spectral element
onto the parent element S =[−1, 1] × [−1, 1] on which the integrals in the weak formulation are
evaluated using Gauss–Lobatto Legendre quadrature rules. A typical spectral element mesh for
the journal bearing configuration is shown in Figure 4. Let the spectral elements in the radial and
azimuthal directions be labelled by � ∈ [0, �̂] and � ∈ [0, �̂], respectively. Then, the Jacobian, J�,�,
of the transformation from a spectral element to the parent element is given by the expression

J�,�(r, �) ≡ 1

2

(
1 − R

�̂ + 1

)(
	

�̂ + 1

)
r(1 − � cos �)

where

r = R + 1

2

(
1 − R

�̂ + 1

)
(� + 2� + 1), � = 	

�̂ + 1
( + 2� + 1) (32)

The approximate solution, u=[u, v] in R2, is represented as continuous piecewise differentiable
polynomials. Each component, u, v, is expressed as a high-order interpolant with respect to the
set of Gauss–Lobatto Legendre nodes within each spectral element. Polynomial interpolants of
degree N are used in both the radial and angular directions. A 2D grid containing (N + 1)2

points is associated with each element. The velocity representation over the parent element is
given by

ua(�, ) =
N∑
i=0

N∑
j=0

uai j hi (�)h j () (33)
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Figure 4. The discretization of the physical domain into four elements in the azimuthal direction and two
in the radial direction. The thick lines outline the 4× 2 spectral elements and the dashed lines meet at

Gauss–Lobatto points for order N = 4 in both directions.

where

hi (�) ≡− (1 − �2)L ′
N (�)

N (N + 1)LN (�i )(�−�i )
(34)

and LN (�) is the Legendre polynomial of degree N . We also approximate the kinematic stress
and log density using a basis of the same order:

T ab(�, ) =
N∑
i=0

N∑
j=0

T ab
i j hi (�)h j () (35)

q(�, ) =
N∑
i=0

N∑
j=0

qi j hi (�)h j () (36)

In the semi-Lagrangian step of the algorithm, it is necessary to determine xn from a knowledge
of each Gauss–Lobatto point x that is uniquely specified by its element (�, �) and its position
(i, j) within that element. The next step in the algorithm requires the determination of the element
in which xn is located. The point xn is given in Cartesian coordinates and requires the inverse
mapping of (19) to find its corresponding (r, �) coordinates and thus the element S�,� with local
coordinates (�, ). The final step is to calculate the value of un at this point, i.e.

un(xn) =
N∑
i=0

N∑
j=0

uni, j hi (�)h j ()
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Similarly, the value of qn is also determined at xn . This process can generate a position xn that lies
outside the bearing, particularly if the radii of the journal and bearing are close to one another and
the journal is rotating rapidly. For such a simulation, it is reasonable to choose the r coordinate
of xn to be kept equal to that of x.

The discrete equations are obtained by inserting (33), (35) and (36) into weak formulation
(29)–(31), choosing an appropriate test space and approximating the integrals using Gauss–Lobatto
Legendre quadrature rules. The following arrays, defined with reference to a local spectral element,
are required in order to construct the global system of discrete equations:

Āi jkl ≡
∫
S
J (�, )hi (�)h j ()hk(�)hl() = Ji j�i� j
ki
l j (no sum)

C̄i jkl
b ≡

∫
S
Zcb(�, )hi (�)h j ()[hk(�)hl()],c = �i� j Z

cb
i j

{
Dik
l j , c= 1


ki D jl , c= 2

f̄ kla ≡
∫
S
J (�, )unah̄kl = Ji j�k�lu

n
akl

where J is the Jacobian of the transformation from the spectral element to the parent element, Zcb

are the geometric factors associated with the mapping defined by

Zcb
i j =

(
��c

�xb
J

)
(�i , � j ) (37)

and �i , i = 0, . . . , N , are the weights in the Gauss–Lobatto Legendre quadrature rule given by

�i ≡
∫ 1

−1
hi (x) dx = 2

N (N + 1)

1

[LN (�i )]2

Matrix Ā is the mass matrix. Matrix Di j = h′
j (�i ) is the differentiation matrix associated with

the interpolants (34) and explicit expressions exist for the entries of D (see, for example, Canuto
et al. [24]). Note that the entries of these local arrays are defined with respect to a particular
spectral element ��,� since Zcb and J are element dependent. The unknowns within each element
are denoted by qi j , uai j and T ab

i j . The above system is supplemented with boundary conditions
once the global system has been constructed.

The global matrices Ai jkl ,Ci jkl
b , f kla , etc. are assembled from the local arrays defined above.

Given a local matrix L̄ (e.g. Āi jkl , C̄i jkl
b , f̄ kla ) we construct a global matrix, L , as follows. Define

¯̄L��
i jkl =

{
L̄��
i jkl , i, j, k, l ∈ [0, N ]

0 otherwise

then the global matrix L is given by

Li jkl =
�̂∑

�=0

�̂∑
�=0

¯̄L��
i−�N , j−�N ,k−�N ,l−�N , i, k ∈ [0, N̂ ], j, l ∈ [0, M̂]
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where N̂ = N (�̂ + 1), M̂ = N (�̂ + 1). If there is periodicity in the � so that uai0|�= 0 = uai N |�= �̂
then we modify this expression

Li jkl =
�̂∑

�=0

[
�̂∑

�=1

¯̄L��
i−�N , j−�N ,k−�N ,l−�N + 
 j

M̂
¯̄L�,0
i−�N ,0,k−�N ,l

+ 
l
M̂

¯̄L�,0
i−�N , j−�N ,k−�N ,0 + 
 j

M̂

l
M̂

¯̄L�,0
i−�N ,0,k−�N ,0

]

where i, k ∈ [0, N̂ ], j, l ∈ [1, M̂] . Therefore, in terms of the global arrays, the discretization of
(29)–(31), can be written in matrix form

ū : ¯̄A + �tT̄ : ¯̄c= ūn : ¯̄A + �tc2q̄ · ¯̄c + �t ȳ (38)

q̄ · ¯̄A + �t ū : ¯̄c T = q̄n · ¯̄A (39)

T̄ · ¯̄A= �ū : ¯̄F + �ū : ¯̄G (40)

where the overlines represent the ranks of quantities in the function basis and lowercase (uppercase)
bold characters are vectors (matrices) in the physical space and an underlined bold matrix is a
third-rank tensor. The single dot product is in the function space and the colon product is on both
spaces. The matrix definitions are

(ū)ai j ≡ uai j , ( Ā)i jkl ≡ Ai jkl , (T̄)abi j ≡ T ab
i j , ( ¯̄c)bi jkl ≡Cb

i jkl , (q̄)i j ≡ qi j

( ¯̄cT)ai jkl ≡Ca
kli j , ( ¯̄F)cabi jkl ≡Cb

kli j

ac + Ca

kli j

bc, ( ¯̄G)cabi jkl ≡Cc

i jkl

ab

(ȳ)bkl ≡
∑
a

[(q̄ · ¯̄cT )aklT
ab
kl ]

The expression for ȳ involves both q and T, and is evaluated explicitly. The unknowns associated
with q and T are eliminated from (38) using (39) and (40), respectively, to obtain the following
system for ū:

ū : ¯̄M= v̄ (41)

where

¯̄M≡ ¯̄A ⊗ I + {[c2�t ¯̄c T ⊗ I + � ¯̄F + � ¯̄G] · ¯̄A−1 : ¯̄c}�t (42)

and

v̄≡ ūn : ¯̄AI + c2�t q̄ n · ¯̄c + �t ȳ (43)
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Boundary conditions are implemented by modifying (43) so that

vbkl → vbkl −
2∑

a=1

M̂∑
j=1

Mab
0 jkl V

a
j , k ∈ [1, N̂ − 1], l ∈ [1, M̂] (44)

where V a
j are the given values of velocity on the boundary of the journal implied by the no-slip

boundary condition with M̂ = N (�̂ + 1) and N̂ = N (�̂ + 1).
Once system (41) has been solved for ū, the pressure and kinematic extra-stress are evaluated

using

q̄ = q̄n − �t ū : ¯̄c T · ¯̄A−1 (45)

and

T̄= ū :[� ¯̄F + � ¯̄G] · ¯̄A−1 (46)

respectively.
On substitution and simplification, we find matrix Mab

i jkl reduces to

¯̄Mab = ¯̄A
ab + [�( ¯̄Cc
T · ¯̄A−1 · ¯̄Cc
ab + ¯̄Cb

T · ¯̄A−1 · ¯̄Ca)

+(� + c2�t) ¯̄Ca
T · ¯̄A−1 · ¯̄Cb]�t (47)

This is a symmetric matrix in the sense that Mab
i jkl = Mba

kli j . The log density, in this notation, is
given by

q̄ = q̄ n − �t ū a · ¯̄Ca
T · ¯̄A−1 (48)

Note that this update of q is only required once per time step and not within the iteration scheme.
Once the resulting system of linear equations

ū : ¯̄M= v̄ (49)

has been solved to obtain the global solution ū= v̄ ¯̄M−1, it remains to determine the solution u��,a
i j

locally within a spectral element. This may be viewed as the inverse process to that which formed

v from v
��,b
kl . If we define

� = int[(k − 1)/N ], � = int[(l − 1)/N ]
i = (k + �)mod(N + 1), j = (l + �)mod(N + 1)

then

u��,a
i j = uakl , k ∈ [0, N̂ ], l ∈ [1, M̂], a ∈ [1, 2]

where N̂ = N (�̂ + 1), M̂ = N (�̂ + 1).
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The values of the solution in real space are given by u��,a
i j at the points (r cos �+�(1−r), r sin �)

where r, � are given by (32). Thus, each set of values (�, �, i, j) specifies a point at which the

values of the three fields u��,1
i j , u��,2

i j , q��
i j are determined.

The force, F, on the journal is given by

F≡−
∫
C
S · n dC (50)

where C is the boundary of the journal, n is the unit outward normal to the boundary (radial
direction) and S is the total stress. In two dimensions, this is conveniently written as

Fa =
∫
C
Sab�bc dxc (51)

where �bc is the second-order alternating symbol. In fact, a good approximation to the force in
this application is obtained by ignoring the extra stress contribution altogether, since tr(S) = 0, and
writing the components of force

Fa =
∫
C
Sab�bc dxc ≈

∫
C
p�ab dxb (52)

Using Gaussian quadrature on the journal boundary (� = i = 0), this is

Fa =∑
�

∫ 1

−1
Sab0, j �

bc �xc

�
d

=∑
�

∫ 1

−1
�0, j (−c2
ab + T ab

0, j )�
bc �xc

�
d

=∑
�

∫ 1

−1
exp(q0, j )(−c2
ab + T ab

0, j )�
bc �xc

�
d

= ∑
�

∑
j
� j exp(q0, j )(−c2
ab + T ab

0, j )�
bc �xc

�

∣∣∣∣∣
0, j

, � ∈ [0, �̂], j ∈ [0, N ]

In practice, we use globally defined quantities so that j ∈ [1, N (� + 1)] and

Fa = ∑
j
� j exp(q0, j )(−c2
ab + T ab

0, j )�
bc �xc

�

∣∣∣∣∣
0, j

(53)

Similarly, the resultant torque, �, on the journal is given by

� = R
∫
C
Sabna dxb (54)
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6. NUMERICAL RESULTS

The numerical results presented in this section are for a journal bearing and lubricant specified
by the parameters in the table below. Variations to the values listed here are also considered.

Bearing radius (m) 0.05005
Journal radius (m) 0.05000
Angular velocity (rad/s) 500
Density (kg/m3) 400
Viscosity (Pa s) 5× 10−3

The kinematic viscosity is �≡ �/�= 1.25× 10−5 m2/s. The Reynolds number with dimension-
less length based on the average gap is conventionally defined

Re= �RJ(RB − RJ)

�

which, for the parameters in the table, gives Re= 100. This Reynolds number equates the flow as
essentially a channel flow where the width of the channel is taken as a characteristic length and
effectively ignores the centripetal forces. On the other hand, it may be argued that a more realistic
Reynolds number is Re= 105 by taking the characteristic length to be that of the radius of the
journal, i.e. the ratio of inertial to viscous forces.

The key result of this paper concerns the relationship between the speed of sound c and the
force on the journal as it rotates eccentrically within the bearing (see, for example, Figure 5).
The extended line joining the journal and bearing centres is defined to be the x-axis. Consider a
journal rotating in an anticlockwise direction with relative radii R = RJ/RB = 0.999, eccentricity
ratio �= 0.98, kinematic viscosity �= 1.25× 10−5 m2/s and angular velocity �= 500 rad/s. In
Figure 5 the variation of the force (N ) on the journal with respect to the speed of sound is shown.
When the speed of sound assumes values in the region of those for water or oil, the component,
Fx , of the force on the journal becomes the dominant component and acts in the direction away
from the narrow gap. As c increases, the direction of the force on the journal moves towards
a position perpendicular to the x-axis in the direction of the fluid flow in the narrow gap (y-
axis). Additionally, as the speed of sound increases from c= 1000m/s through coil = 1500m/s
to c= 5000m/s, the force decreases in magnitude. These values are of theoretical interest only
and act as a guide to what to expect when implementing a more realistic equation of state. Also,
by means of extrapolation, we estimate that Fx = 0N and Fy ≈ 1000N for an incompressible
fluid. This implies that an incompressible Newtonian fluid cannot inhibit the journal from making
contact with the bearing when the journal is free. This implication agrees with an investigation
by Brindley et al. [25] who, using lubrication theory, showed that under full-film conditions every
journal trajectory spiralled towards the bearing for the range of parameters used in their study.
In this situation the load-bearing capacity of the journal is zero and the bearing ultimately fails.
However, if the speed of sound is set to almost any reasonable finite value, a component of force
in the negative x-direction is introduced. This ensures that the contact between the journal and
bearing is avoided.

Figure 5 shows that the magnitude of Fx can exceed that of Fy for sufficiently large eccentricity
ratios. This suggests a mechanism whereby cavitation in a lubricant within the journal bearing
could have a beneficial effect on its stability through lowering the local speed of sound.
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Fy

Fx -2,000 -1,000

-500

0

500

Figure 5. The force (N ) on a journal rotating in an anticlockwise direction with relative
radii R = 0.999, eccentricity ratio � = 0.98, kinematic viscosity �= 1.25× 10−5 m2/s and angular
velocity �= 500 rad/s. The radii (≈ 0.05m) of the journal and bearing have been exaggerated and

superimposed on the forces for clarity.

Fx

Fy

-2,000 -1,000 1,000

-1,500

-1,000

-500

1,500

1,000

500

0

0

Figure 6. The evolution of the force (N ) (grey curved lines) on the journal, towards
steady-state vectors with relative radii R = 0.999, eccentricity ratio �= 0.98, kinematic viscosity

�= 1.25× 10−5 m2/s and angular velocity � = 500 rad/s.

The transient behaviour of the force as the flow approaches steady state is shown in Figures 6
and 7. In Figure 6, the force is shown for values of c between 1000 and 2000m/s, whereas in
Figure 7 the same information is shown for values of c between 2500 and 5000m/s. The figures
show that, at values of c around that of oil, the transient behaviour is smooth, but as the value of
c increases Fy exhibits oscillatory behaviour on its way to its steady-state value. Not shown in
these figures is the time taken to achieve steady state, which for coil can be significantly greater
than 50 times that of the near incompressible fluids with c>3coil.

Figures 8 and 9 are shown for comparison with Figures 6 and 7, but at a smaller eccentricity
ratio (�= 0.9 as opposed to �= 0.98) revealing the expected smaller forces. These figures also
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F
y

Fx

Figure 7. The evolution of the force (N ) (grey curved lines) on the journal towards steady state
(scaled for clarity) with relative radii R = 0.999, eccentricity ratio �= 0.98, kinematic viscosity
�= 1.25× 10−5 m2/s and angular velocity � = 500 rad/s. Speed of sound progresses in intervals

of 500m/s from 2500 to 5000m/s.

show that the magnitude of Fx is relatively smaller than Fy . Figure 9 shows clearly the nature of
the oscillations for the higher values of c.

The increasing dominance of Fx over Fy with increasing eccentricity ratio is due entirely to
the asymmetry in the pressure distribution around the narrow gap as can be seen in Figure 10.
Conversion from log density, q to pressure is done by using p= c2� = c2�0 exp(q) so that the
pressure difference across the small gap for eccentricity �= 0.9 is p≈ 15002 × 400× [exp(0.1) −
exp(−0.08)]= 20MPa. Eccentricity ratios approaching 0.98 with (RB − RJ)/RB = 10−3 imply a
small gap of the order of 1�m and, as such, are only of theoretical interest since, for example, the
elasticity of the journal bearing plays a significant part.

The positive peak moves towards � = 0 as the eccentricity ratio increases causing the resultant
force to align more with the negative x-axis (it was this behaviour that instigated the use of stretched
spectral elements). The asymmetry about the narrow gap, corresponding to � = 0 is present for all
values of �>0 but becomes more marked for �>0.9 creating an increasing negative component of
the net force on the journal away from the narrow gap.

The torque on the journal is of natural interest to engineers since high torque implies large
energy loss and lower efficiency. However, high torque also implies high temperatures increasing
the tendency for the fluid to cavitate. Figure 11 shows the transient behaviour of the torque for
eccentricity ratios ranging from 0.90 to 0.96. The torque and Fy settle down to steady values long
before Fx , as can be seen from this figure since the curves are terminated once Fx achieves its
steady-state value. We can also see in this figure that it takes longer to achieve a steady-state value
of the torque when the eccentricity ratio is higher.
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Fx

Fy

Figure 8. The evolution of the force (N ) (grey curved lines) on the journal towards steady state
with relative radii R = 0.999, eccentricity ratio �= 0.90, kinematic viscosity � = 1.25× 10−5 m2/s

and angular velocity � = 500 rad/s.

The driving force behind the net torque is the shear stress around the journal. This is shown in
Figure 12, revealing again an asymmetry about the narrow gap � = 0. For �>0.5, the shear stress
becomes negative in a region around the narrow gap. This latter feature remains the case for a
near incompressible fluid characterized by large sound speed, c.

Figure 13 is similar to Figure 10 except that the pressure curves are generated by changing the
speed of sound (rather than changing the eccentricity ratio) from 1000 to 5000m/s in increments
of 500m/s. For smaller values of c, pressure curves are generated that are almost symmetric about
the narrow gap at � = 0. Figure 14 shows density curves, generated by changing angular velocity,
�. The behaviour suggests that the force on the journal is roughly linear in response to changes
in � within this parameter range.

Finally, the effect of changing the bulk viscosity on the behaviour of the journal is shown in
Figure 15 by plotting ln � (left) and � − Srr/c2 (right) around the surface of the journal. This
figure shows categorically that the effects of bulk viscosity are absolutely negligible and therefore
its value can be chosen conveniently (though the choice must be positive so as not to violate the
second law of thermodynamics). The natural candidate is for vanishing bulk viscosity (implying,
� =−2�/3), but a choice of, for example, 2�/3 (implying � = 0) may also be convenient. The
figure also demonstrates that, even at the large bulk viscosities considered, the pressure at the
surface of the journal given by the normal stress (as opposed to p), is negligible.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1091–1120
DOI: 10.1002/fld



1114 P. C. BOLLADA AND T. N. PHILLIPS

F
y

Fx

Figure 9. The evolution of the force (N ) (grey curved lines) on the journal towards steady state
(scaled for clarity) with relative radii R = 0.999, eccentricity ratio �= 0.90, kinematic viscosity
�= 1.25× 10−5 m2/s and angular velocity � = 500 rad/s. Speed of sound progresses in intervals

of 500m/s from 2500 to 5000m/s.

Figure 10. Profiles of ln � as a function of � on the surface of the journal for different eccentricity ratios
(� = 0.1–0.9 in steps of 0.1) with c= 1500m/s, � = 1.25× 10−5 m2/s, � = 500 rad/s and R = 0.999.
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Figure 11. The evolution of the torque (Nm) on the journal towards steady state for 0.90���0.96
with relative radii R = 0.999, kinematic viscosity �= 1.25× 10−5 m2/s, speed of sound c= 1500m/s

and angular velocity � = 500 rad/s.

Figure 12. The shear stress Sr,� (Pa) on the journal for 0.1���0.9 and c= 1500m/s revealing again
an asymmetry about the narrow gap.
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c=1000m/s

Figure 13. Profiles of q = ln � as a function of � on the surface of the journal for a fixed eccentricity
ratio � = 0.98. The figure shows the effect of varying the speed of sound from c= 1000 to 5000m/s. The
smaller the value of c the larger the values of � and the peak moves towards the narrow gap, showing

that decreased c increases the component of force away from the narrow gap.

6.1. Discussion on numerical convergence and computing time

The spectral element method allows for mesh refinement either by increasing the number of
elements or through increasing the order of polynomial approximation. Thus, we have two inde-
pendent methods for checking the accuracy of our numerical predictions. This is obviously very
satisfactory when both methods of refinement agree. In Table II, it can be seen that increasing the
number of elements beyond 16 has little effect on the value of the cosine of the force direction,
Fx/|F|, and the approximation has effectively converged. In Table I, the effect of changing the
order of polynomial approximation for a fixed number of elements on the cosine of the force
direction is shown. Since the agreement between successive entries in this table is ∼0.01%, this
provides confidence in the convergence of the approximation with mesh refinement.

Table III shows the computing times for different values of �̂ + 1 for polynomial order N = 6
and just one spectral element in the radial direction. The matrix dimension is 2(N (�̂+1)−1)N (�̂+
1) = 60(�̂ + 1), e.g. for �̂ + 1= 8 gives a 480× 480 matrix. Note, that this slightly complicated
formula for the matrix dimension comes about because of the periodicity at one of the boundaries
and the coincidence of spectral elements at each element boundary. For this linear model, the
matrix is only set up once. Refinements, say shear thinning, involves some setting up of the matrix
at each time step with consequent increased run times.
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Figure 14. Profiles of q = ln � as a function of � on the surface of the journal for a fixed eccentricity ratio
of � = 0.98. The figure shows the effect of varying the angular velocity uniformly from 0 to 500 rad/s

with �= 0.98, R = 0.999, c= 1500m/s and �= 1.25× 10−5 m2/s.

/cSrr

Figure 15. Profiles of q = ln � (left) and � − Srr/c2 (right) as a function of � on the surface of
the journal, as the kinematic bulk viscosity 2

3� + � goes from zero to 100KPa s (a very large
value compared with �). The other parameters used are c= 1500m/s, �= 1.25× 10−5 m2/s,

�= 0.9, RJ = 0.999 and � = 500 rad/s.
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Table I. The values of Fx/|F| as a function of � for different orders of polynomial approxi-
mation with 16 spectral elements (�̂ = 15), c= 1250m/s, � = 1.25× 10−5 m2/s, R = 0.999.

Polynomial order N

� 6 7 8 9

0.80 −0.1174 −0.1176 −0.1176 −0.1176
0.82 −0.1392 −0.1393 −0.1393 −0.1393
0.84 −0.1685 −0.1686 −0.1686 −0.1686
0.86 −0.2092 −0.2093 −0.2094 −0.2094
0.88 −0.2680 −0.2681 −0.2682 −0.2682
0.90 −0.3558 −0.3558 −0.3560 −0.3561
0.92 −0.4883 −0.4880 −0.4884 −0.4886
0.94 −0.6738 −0.6727 −0.6733 −0.6737
0.96 −0.8640 −0.8624 −0.8635 −0.8640
0.98 −0.9689 −0.9687 −0.9699 −0.9699

Note: The results suggest that for N = 9 the values have converged to ∼ 0.01%.

Table II. The values of Fx/|F| as a function of � for different numbers of spectral elements
with N = 6, c= 1250m/s, �= 1.25× 10−5 m2/s, R = 0.999.

Number of spectral elements �̂ + 1

� 8 16 32 64

0.80 −0.1172 −0.1174 −0.1175 −0.1175
0.82 −0.1390 −0.1391 −0.1392 −0.1392
0.84 −0.1685 −0.1685 −0.1685 −0.1685
0.86 −0.2098 −0.2092 −0.2093 −0.2093
0.88 −0.2700 −0.2680 −0.2681 −0.2681
0.90 −0.3605 −0.3558 −0.3560 −0.3560
0.92 −0.4974 −0.4883 −0.4887 −0.4887
0.94 −0.6867 −0.6738 −0.6741 −0.6741
0.96 −0.8795 −0.8640 −0.8643 −0.8644
0.98 −0.9862 −0.9689 −0.9700 −0.9700

Note: The results suggest that convergence to ∼0.01% is satisfied for 32 elements and also in
good agreement with the higher-order result given in Table I.

Table III. The set-up time and total computing time to achieve steady state
after 100 time steps for different refinements of �̂ with N = 6, �= 0.

Number of spectral elements �̂ + 1

Time (s) 8 10 12 14 16

Set-up 30.0 60.5 107.0 171.1 255.1
Total 68.6 114.9 178.9 262.1 369.7

Note: We note that over 64% of the total computing time is due to the initial
setting up of the matrix and increases with the number of elements.
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7. CONCLUSIONS

The main result in this paper is the important role played by compressibility in enhancing the
load-bearing capacity of a journal bearing. For a journal bearing of radius 0.05m rotating at
500 rad/s, the speed of the fluid in the gap is of the order of 1/50 of that of the speed of sound
in the fluid, i.e. the Mach number is 0.02. For such a low Mach number, one might reasonably
expect the effects of compressibility to be negligible. However, in the case of a journal bearing,
a Newtonian fluid generates an (almost) antisymmetric pressure field about the small gap. Any
mechanism which breaks this antisymmetry will generate a resultant force in the direction of the
line joining the two centres (indeed a pressure thinning mechanism, as used here, can also do this).
However, it is the compressibility of the fluid that plays the most significant role. The effect being
amplified by high eccentricity which squeezes the fluid at the small gap. For �= 0.98, R = 0.999,
the ratio of large to small gap is approximately 100:1.

An advantageous feature of the model used here is its similarity to constant density (incom-
pressible) Navier–Stokes equations, due largely to a linear equation of state p= c2� and the use
of the parameter q ≡ ln �, which together with the semi-Lagrangian discretization of the material
derivatives ensures that many of the terms in the equations remain linear and allows a very efficient
spectral element numerical scheme.

The compressible model described in this paper is currently being extended to include further
developments in the modelling of lubricating oils such as cavitation. This model will feature a
temperature-dependent vaporization point below which compressibility effects will be prominent
due to lower values of the sound speed. The other natural development in the near future is to
examine the dynamics of a journal bearing, under an external applied load, of a free journal under
the present model and an extension of the model to include viscoelasticity.
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